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A fully fermionic mean field theory of the cuprate superconductors
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We introduce a new mean field approach to the extended tJ model that incorporates both electron-
like quasiparticle and spin-charge separated excitations as suggested by experiments and numerical
studies. It leads to a mean field phase diagram which is consistent with that of hole and electron
doped cuprates. Moreover, it provides a framework to describe the observed evolution of the electron
spectral function from the undoped insulator to the overdoped Fermi metal for both hole and electron
doping. The theory also provides a non-BCS mechanism leading to superconductivity.

The evolution of the electronic structure from the un-
doped antiferromagnetic (AF) insulator to the overdoped
metallic state of cuprates is a long standing problem. The
plethora of anomalous behavior displayed by these mate-
rials is particularly striking in hole underdoped samples,
for which both experimental [1–6] and numerical [7–9] ev-
idence suggests a dichotomy of the electronic excitations:
the excitations around the nodal points [k = (±π

2 ,±π
2 )]

are well described as Landau’s quasiparticles while those
near the anti-nodal points [k = (π, 0), (0, π)] show no
signs of quasiparticle-like behavior. Some experimental
[10] and numerical [7–9, 11] studies relate this absence of
quasiparticles to spin-charge separation phenomenology.

In the slave-boson approach to the tJ model [12] the
electron is split into a spinon (a spin-1/2 neutral fermion)
and a holon (a spin-0 charged boson). The spin-charge
separation phenomenon corresponds to the rapid decay of
an electron excitation into a spinon and a holon, leading
to the lack of quasiparticle features as observed near the
anti-nodal points. However, the appearance of quasipar-
ticles near the nodal points means that, in this k-space
region, the spinon and the holon form a bound state.
[12, 13] Within the slave-boson theory this fact can only
be captured by going beyond the mean field (MF) ap-
proximation.

In order to overcome the above shortcoming, in this
letter, a new approach to the extended tJ model is intro-
duced. Instead of using spinons and holons, the resulting
new MF theory describes the low energy physics in terms
of spinons and doped carriers. The doped carriers are
holes in the hole doped (HD) regime and electrons in the
electron doped (ED) regime. For ease of speaking, below
we refer to the doped holes/electrons as dopons, which
are spin-1/2 charged fermions. A holon is then viewed
as a bound state of a spinon and a dopon. We show
that the new MF approach leads to a MF phase diagram
that resembles the one of HD and ED cuprates. It also
accounts for the doping evolution of the electronic struc-
ture, as seen by ARPES, in both HD and ED samples.

We start with the 2D tt′t′′J Hamiltonian

HtJ = J
∑

〈ij〉∈NN

Si.Sj −
∑

〈ij〉,σ
tijP

(
c
†
i,σcj,σ +H.c.

)
P (1)

where tij = t, t′, t′′ for first, second and third nearest

neighbor (NN) sites respectively and P projects out dou-
bly occupied sites. The tJ-model on-site Hilbert space,
{|↑〉 , |↓〉 , |0〉}, includes states with either one or zero spin-
1
2 objects.

To obtain the new MF theory we start with an enlarged
on-site Hilbert space {|↑0〉 , |↓0〉 , |↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉}
which contains either one or two spin- 1

2 objects. The
states |↑0〉, |↓0〉 and the local singlet state 1√

2
(|↑↓〉−|↓↑〉)

map onto the states |↑〉, |↓〉 and the vacancy state |0〉, re-
spectively, in the tJ-model on-site Hilbert space. The
on-site triplet states, such as 1√

2
(|↑↓〉 + |↓↑〉), are un-

physical. We also introduce the fermionic representation
for the first spin (the lattice spin), Si = 1

2f
†
i σfi, and

the second spin (the doped spin), 1
2d

†
iσdi, where σ are

the Pauli matrices. Here, f †
i and d

†
i are the spinon and

the dopon creation operators. Then, the Hamiltonian
Henl

tJ = Ht
enl +HJ

enl, where

Ht
enl =

∑

〈ij〉,σ
tijP̃

[(
d
†
iσdj

)
.

(
iSi × Sj −

Si + Sj

2

)
+

+
1

4
d
†
idj + d

†
idjSi.Sj + h.c.

]
P̃ ,

HJ
enl = J

∑

〈ij〉∈nn

Si.Sj P̃
(
1 − d

†
idi

)(
1 − d

†
jdj

)
P̃ (2)

and P̃ enforces the no double occupancy constraint for
the d-fermion, equals HtJ in the tJ-model Hilbert space.
Ht

enl is such that only local singlet states hop between
different lattice sites whereas local triplet states have no
kinetic energy. Therefore, the dynamics enclosed in Ht

enl

effectively implements the local singlet constraint. We
are mostly interested in the low doping regime and, thus,
below we drop the projection operators P̃ in Henl

tJ .
The Hamiltonian Henl

tJ is a sum of terms with up to
six fermion operators. In the following, we replace some
multiple-fermion operators by their average so that the
resulting MF Hamiltonian is quadratic in the operators
f †, f , d† and d and describes the hopping, pairing and
mixing of spinons and dopons.

The exchange Hamiltonian HJ
enl is decoupled by

means of the d-wave ansatz [12] and becomes

− 3J̃
8

∑
〈ij〉∈NN [χf †

i fj + (−)jy−iy ∆(f †
i↑f

†
j↓ − f

†
i↓f

†
j↑) +



2

h.c.]+a0

∑
i(f

†
i fi −1) where J̃ = (1−x)2J , χ and ∆ are

the spinon bond and pairing MFs and a0 is the Lagrange
multiplier enforcing

〈
f
†
i fi

〉
= 1.

We now consider the hopping Hamiltonian Ht
enl. Once

the effective hopping amplitude of one hole in an AF
background is renormalized by the spin fluctuations, [14]
we replace the bare t, t′ and t′′ by the effective hop-
ping parameters t1, t2 and t3 which are determined
phenomenologically. The terms [(d†iσdj).(iSi × Sj)]

and (d†idjSi.Sj) in Ht
enl are the sum of operators like

d
†
i,αdj,βf

†
i,γfj,δf

†
j,µfi,ν and, in our decoupling scheme,

only contribute to the MF spinon and dopon hopping
terms. The first contribution comes from the averages of
two d and two f operators (

〈
d
†
i,αdj,βf

†
i,γfj,δ

〉
) and yields

the spinon NN hopping term t1x
2

∑
〈ij〉∈NN(f †

i fj + h.c.).
The second contribution arises, instead, from taking the
averages of the four f operators (

〈
f
†
i,γfj,δf

†
j,µfi,ν

〉
), which

reduce to 〈Si × Sj〉 and 〈Si.Sj〉, and adds up to the do-
pon hopping term. We remark that, in the presence of
local AF correlations, the vacancy in the hole/electron-
like quasiparticle state is surrounded by an AF-like con-
figuration of spins. [9] To approximately account for
this effect, we assume that the spins encircling the va-
cancy in the one-dopon state are in a local Néel configu-
ration. Therefore we use 〈Si × Sj〉 = 0 and 〈4Si.Sj〉 =
(−1)jx+jy−ix−iy . Finally, to decouple the spinon-dopon

interaction [(d†iσdj).(Si + Sj)] we introduce b0 =
〈
f
†
i di

〉

and b1 =
〈

3
8

∑
ν tν

∑
û∈ν NN f

†
i di+û

〉
, where û = ±x̂,±ŷ,

û = ±x̂± ŷ and û = ±2x̂,±2ŷ for ν = 1, 2, 3 respectively.
The resulting total MF Hamiltonian, written in terms

of the Nambu operators η†i = [η†i1η
†
i2] = [d†i↑di↓] and ψ†

i =

[ψ†
i1ψ

†
i2] = [f †

i↑fi↓] , is:

HMF
tJ =

∑

k

[
ψ
†
k
η
†
k

] [
αz

k
σz + αx

k
σx βkσz

βkσz γkσz

] [
ψk

ηk

]
+

+
3J̃N

4
(χ2 + ∆2) − 2Nb0b1 −Nµd (3)

where αz
k

= −(3J̃
4 χ − t1x)(cos kx + cos ky) + a0, α

x
k

=

− 3J̃
4 ∆(cos kx − cos ky), βk = 3b0

4 [t1(cos kx + cos ky) +
2t2 cos kx cos ky + t3(cos 2kx + cos 2ky)] + b1 and γk =
2t2 cos kx cos ky + t3(cos 2kx + cos 2ky)−µd, N is the lat-
tice size and µd is the dopon chemical potential that sets
the doping level

〈
d
†
idi

〉
= x. The eigenenergies of HMF

tJ

are ǫ±1,k = ±
√
ρk −

√
δk and ǫ±2,k = ±

√
ρk +

√
δk where

δk = β2
k
[(γk +αz

k
)2 +(αx

k
)2]+ 1

4 [γ2
k
− (αx

k
)2− (αz

k
)2]2 and

ρk = β2
k

+ 1
2 [γ2

k
+ (αx

k
)2 + (αz

k
)2]. ǫ1,k and ǫ2,k are the

lowest and highest energy bands respectively.
If we ignore the spinon-dopon mixing, the spinon sec-

tor of HMF
tJ describes the same spin dynamics as the

slave-boson theory. [13] The dopon sector, on the other
hand, determines the dynamics of the hole/electron-like
quasiparticle excitations. In the current approximation,
the dopon only has intrasublattice hopping processes (see
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FIG. 1: (a) Regions in the (x-T ) plane where ∆ = 0 or ∆ 6= 0
as well as b0 = b1 = 0 or b0, b1 6= 0. The dashed lines indicate
the TKT described in the main text where long range order in
the dopon-spinon mixing channel is destroyed by vortex fluc-
tuations. (b) The (x-T ) phase diagram including the AF, SC,
strange metal (SM), Fermi liquid (FL) and pseudo-gap with
and without Nernst signal, labeled by N and PG respectively,
regions. Both HD and ED cases are depicted in (a) and (b).

γk) due to the AF correlations enclosed in the spin av-
erage 〈Si.Sj〉 used to derive HMF

tJ . In the HD regime,
we choose t2 and t3 so that γk approximately follows the
high energy dispersion identified by ARPES [4, 15] which,
for x ≈ 0, is isotropic around (π

2 ,
π
2 ) with a bandwith

∼ 2J and whose high energy pseudogap around (π, 0)
closes at x ∼ 0.3. [1] As a result, tHD

2 = 0.5 × x
0.3J and

tHD
3 = 0.5J − 0.25 × x

0.3J . In ED materials the electron
pocket shows up around (π, 0) instead [16] and we take
tED
2 = 0.8J − 0.3× x

0.3J and tED
3 = 0.10J + 0.15× x

0.3J .
The renormalized NN electron hopping amplitude t1 is
chosen to be t1 = −J as, we find, it correctly leads to
the doping independent nodal dispersion “kink” energy
≈ J

2 found in HD samples. [17]

After determining t1,2,3 from the ARPES data, we cal-
culated the MF phase diagram in Fig. 1a. It contains
four MF phases, all of which are observed in the cuprates:
(a) d-wave SC state when b0, b1 6= 0 and ∆ 6= 0; (b) Fermi
liquid state when b0, b1 6= 0 and ∆ = 0; (c) pseudo-gap
metal when b0, b1 = 0 and ∆ 6= 0; (d) strange metal when
b0, b1 = 0 and ∆ = 0.

We note that the MF SC transition temperature is
very high in the underdoped regime. This is an ar-
tifact of the MF calculation since the thermal fluctua-
tions of the phases of the condensates b0,1 are ignored.
To crudely estimate the strength of the phase fluctu-
ations of b0, we note that the NN electron hopping
term in HtJ induces a term −|t1|χ

∑
<ij>(b∗0ib0j + h.c.).
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The resulting Kosterlitz-Thouless transition temperature
TKT = 1.8|t1|χb20, [18] above which the condensate av-
erage

〈
b0

〉
vanishes due to phase fluctuations, is plotted

as the dashed-line in Fig. 1a. The state with long-range
SC order only appears below TKT (see Fig. 1b). Above
TKT , and in the underdoped regime, there appear two
distinct pseudo-gap metal regions marked by N and PG
in Fig. 1b. In region N, which is located between the MF
Tc and TKT , the non-vanishing magnitude of the MF or-
der parameters b0,1 leads to short-range SC correlations.
This regime is observed experimentally, as suggested by
the large Nernst signal measured in underdoped HD ma-
terials far above Tc. [19, 20] In the PG region b0,1 = 0
and the SC fluctuations become too small to be detected.

In the above MF calculation we have ignored the
AF phase. To include this state we further intro-
duce the MF decoupling channels m = (−)ix+iy

〈
Sz

i

〉

and n = − (−)ix+iy

8

〈∑
ν=2,3 tν

∑
û∈ν NN d

†
iσzdi+û + h.c.

〉

that account for the staggered magnetization in the
lattice spin and dopon systems respectively. We thus
add 2J∗Nm2 − 4Nmn − 2(J∗m − n)

∑
k
ψ
†
k+(π,π)ψk −

2m
∑

k
(γk +µd)η

†
k+(π,π)ηk to HMF

tJ , where J∗ = λJ̃ and

λ = 0.31 is a renormalization factor that enforces the
transition between AF and SC orders at x = 0.03 on the
HD side. [21] Without addressing the issue of coexistence
of AF and SC, we obtain the AF phase shown in Fig. 1b.
AF order is very robust on the ED side where it covers
the pseudo-gap “Nernst” regime (labeled by N in Fig.
1b), in conformity with the absence of a vortex induced
Nernst signal on these materials, [22] and extends over
most of the SC dome.

To compare the above MF theory to ARPES we note
that ci,σ = 1√

2
(d†i,σf

†
i,−σfi,−σfi,σf

†
i,σ − d

†
i,−σf

†
i,σfi,−σ) is

the electron annihilation operator and the electron cre-
ation operator in the HD and ED regimes respectively.
Below we ignore the incoherent contribution to the elec-
tron spectral function and use ci,σ = 1√

2
(d†i,σ + b0f

†
i,σ)

instead. Figs. 2a-2c show how the MF electron spec-
tral function along the nodal direction evolves with hole

doping. These are T = 0 results and, thus, concern the
SC phase. The spectral function mainly contains two
peaks at ǫ−1,k and ǫ−2,k and displays the following behavior,
which is also observed by ARPES: (a) In the underdoped
regime two dispersive features arise. [4, 15] A linear dis-
persion crosses the Fermi level at a point that deviates
from (π

2 ,
π
2 ) toward (0, 0). At higher energy, a band that

resembles the dispersion of the undoped AF samples car-
ries most of the spectral weight. (b) The two dispersive
features lead to a peak-dip-hump structure. [3, 4] (c)
A nodal dispersion “kink” appears at the “dip” energy.
[3] (d) Spectral weight is transfered, upon doping, from
the ǫ−2,k to the ǫ−1,k band so that the low energy quasi-
particle weight develops above the parent insulator dis-
persion (hence inside the Mott gap!). [15] (e) Increasing
x weakens the AF correlations and reduces the spectral
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FIG. 2: Electron spectral weights at T = 0. (a)-(c) Evolution
of the nodal direction electron spectral function with hole dop-
ing (top color scale). The white dashed line depicts the ǫ−

1,k

band. (d)-(g) Electron spectral weight of the ǫ−
1,k

band states

for different x in the HD regime (middle color scale). The
white dashed line represents the minimum gap locus. The
maximum spectral weight for x = 0.05, 0.12, 0.20, 0.25 is 0.21,
0.35, 0.45 and 0.49 respectively. (h)-(i) Integrated electron

spectral weight for x = 0.05, 0.16 in the ED regime (bottom
color scale). The energy window [−0.15J, 0.15J ] was used. In
(a)-(c) and (h)-(i) a Lorentzian broadening Σ′′(ω) = J

10
was

used.

weight between the nodal point wavevector and (π, π).
The “kink” gets smoothen out along this process. [17]

We remark that the spectral peak in the high energy
ǫ−2,k band is very sharp at MF level. However, beyond
the MF approximation, the strong interaction between an
electron in the ǫ−2,k band and spinons in the ǫ−1,k band may
cause a fast decay of the electron (for instance, into an
electron plus a pair of spinons). As a result, the spectral
peak is expected to be very broad in the ǫ−2,k band.

Figs. 2d-2g show how the spectral weight transfered
from the high energy to the low energy band distributes
in momentum space at T = 0 (hence in the SC phase).
Notably, we find agreement with ARPES data: (a) The
spectral weight associated with each state in the ǫ−1,k

band develops on top of an arc portion of the minimum
gap locus. [4, 6] (b) A transition in the topology of the
minimum gap locus from hole to electron-like at x ≈ 0.20
is obtained. [5, 23, 24] (c) A two gap structure appears in
underdoped samples. [3] Around the nodal point the dis-
persion is controlled by the d-wave SC gap of ǫ−1,k. Due to

the vanishing of spectral weight in the ǫ−1,k band near the
anti-nodal points, the spectral structure in this k-space
region reflects only the high energy gap of ǫ−2,k (which is
reminiscent of the AF insulator). (d) The total spectral
weight in the ǫ−1,k band increases with doping as the arcs
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extend to form a closed surface. (e) The coherence peaks
in the anti-nodal region only appear around and beyond
optimal doping. [2]

Figs. 2h and 2i show that the MF low energy electron
spectral weight distribution for the ED regime is also
consistent with experiments. Indeed, at x = 0.05 there is
AF order and an electron pocket is formed around (π, 0)
and (0, π). [16] Further doping induces SC order and
the d-wave SC quasiparticles develop spectral weight in
the nodal region. As a result, a large “Fermi surface”,
ungapped only along the nodal direction, is observed in
Fig. 2(i). [16, 26]

To conclude, in this letter we introduce a new, fully
fermionic, MF approximation to the tt′t′′J model. Even
though this model concerns an intrinsically one-band sys-
tem, the MF approach gives an effective two-band de-
scription of the interplay between spin and charge dy-
namics. In the absence of spinon-dopon mixing the two
bands separately describe the dynamics of the lattice
spins and that of doped quasiparticles in a spin back-
ground with local AF correlations. Such a quasiparticle
dynamics leads to the appearance of electron pockets in
the AF phase of ED compounds around (π, 0) and (0, π)
(Fig. 2h). [16] On the HD side, however, our calculations
suggest that there are no hole pockets.

To understand this result we remark that local AF spin
correlations strongly suppress the NN dopon hopping (in
our MF approximation it is actually set to zero). Upon
the spinon-dopon mixing mechanism, however, quasipar-
ticles coherently hop between different sublattices. This
fact shows up in the linear quasiparticle dispersion across
the Fermi point [near (π

2 ,
π
2 )] (Figs. 2a-2c). The kinetic

energy gain that follows the emergence of NN hopping
stabilizes the SC phase and the associated fractionalized
spin-liquid background. [27] It also prevents the collapse
of the chemical potential on top of the AF insulator band
[15] once the dispersive features inherited from the un-
doped AF compounds (which show NN hopping frustra-
tion) are relegated to high energy. In our calculation the
top of this band does not go above an energy ≈ −J

2 even
as x → 0. This explains the lack of hole pockets, which
agrees with experiments. [4, 15]

The dopon dynamics leads to several non-trivial spec-
tral function features in the underdoped regime, all of
which are fingerprints of the AF correlations in the metal-
lic state. These are the nodal peak-dip-hump struc-
ture, the nodal dispersion “kink” and the Fermi arcs.
We expect them to persist above Tc, as seen by exper-
iments, [3, 4, 17] once they arise in the presence of a
non-vanishing magnitude of the spinon-dopon mixing MF
order parameters b0,1. Right above Tc, in the Nernst re-
gion, we expect the arcs to be gapped everywhere but
along the nodal direction, as the d-wave gap parameter
∆ 6= 0. Ungapped arcs can emerge, however, along the
crossover between the Nernst and strange metal regimes.

The MF theory herein introduced provides a new route
to the SC state via the coherent spinon-dopon mix-
ing or, equivalently, the spinon-dopon pair condensation〈
f
†
i di

〉
6= 0. Above, we argue that this MF approach is

relevant to both HD and ED cuprates. Indeed, we would
like to stress that, even though the parameters in our
MF theory are based on ARPES data, a relatively quan-
titatively correct phase diagram is obtained. Notably,
this framework accounts for the peculiar evolution of the
electronic structure from the undoped to the overdoped
regime. Comparison to other experiments will appear in
forthcoming publications.
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